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Abstract

Sparse grids are useful for solving large economic models but require knowl-
edge of the value function at carefully chosen gridpoints. Endogenous grid
methods avoid numerical optimization but relinquish control over the grid on
which updated values are returned. This paper presents a method that re-
solves this tension, allowing both to be implemented together. The envelope
condition provides a guess of the policy function that can be used to control
the grid on which the updated value function is known. Although not correct
in general, this guess will be correct after convergence is achieved, ensuring
that the fixed point of the method solves the desired Bellman equation. The
result is a fast and robust method for solving medium-dimension economic

models.
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1. Introduction

As the use of microdata within economics has grown, the desire to solve eco-
nomic models with high levels of heterogeneity, in order to match the patterns
observed in the data, has also increased. But an additional dimension of hetero-
geneity almost invariably translates to additional state variables. Consequently,
incorporating even one or two additional dimensions results in substantial compu-
tational difficulties due to the well-known “curse of dimensionality”. Substantial
advances in solving these problems have been made, but the largest improvements
have focused on how to compute perturbations (i.e. business cycles) from steady-
states (e.g. Ahn, Kaplan, Moll, Winberry & Wolf 2018, Auclert, Bard6czy, Rognlie
& Straub 2021). In terms of solving steady-states themselves, the endogenous grid
method of Carroll (2006) remains the standard approach (see Auclert et al. 2021,
as an example), particularly for models with occasionally binding constraints (i.e.
borrowing constraints).

Sparse grids are often employed to mitigate the computational cost of addi-
tional state variables (e.g. Judd, Maliar, Maliar & Valero 2014, Brumm & Scheideg-
ger 2017) but present an immediate, practical tension — these methods rely on
knowledge of the value function at careful chosen points in the state-space. In con-
trast, the endogenous grid method (as the name suggests) requires relinquishing
control over the grid upon which the value function is known in order to avoid nu-
merical optimization. Thus the current state of affairs is one in which economists
must choose between avoiding numerical optimization and facing the curse of di-
mensionality or avoiding the curse and employing costly optimization routines.

Building on the standard endogenous grid approach, this paper presents a method
that allows both the analytical solution of the optimization problem (as in the en-
dogenous grid method) and the use of sparse grids, eliminating the need to choose
between the two. The key insight is that the traditional endogenous grid approach
takes the value of the value function at some (exogenously specified) gridpoint
and returns the updated value at some (endogenously determined) gridpoint. If
the correspondence between the gridpoint fed into the method and the gridpoint
returned by the method were known a priori, one could use the endogenous grid
method to update the value function at any desired gridpoint by simply plugging
in the corresponding gridpoint.

In equilibrium, this correspondence is exactly given by the (inverse of the) pol-
icy function. Of course, the policy function is unknown (if it were known, there
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would be no need to perform an optimization step at all) so this approach appears
at first to be a dead end. The second insight of this paper is that the envelope
conditions of the problem can be used to construct a guess for the policy function
before the optimization step is performed (and at low computational cost). How-
ever, this guess is not correct in general and, consequently, feeding the implied
gridpoint into the endogenous grid method will not return the desired gridpoint.

The trick, and the major departure of this method from previous methods, is
to treat this guess as if it were correct and assign the updated value function to
the desired gridpoint anyway. The updated guess of the value function, then, is
not the solution to the traditional 7" operator of textbook value function iteration.
However, because the envelope condition will correctly return the policy function
when the guess of the value function is correct, the fixed point of the 7" operator
remains a fixed point of this new iterative process. In the end, this yields an ap-
proach for finding the value function that both avoid numerical optimization (in
the same way that the endogenous grid method does) and allows one to precisely
choose the gridpoints at which the update values of the value function are known
(allowing the use of sparse grids).

A substantial concern with this approach is that erroneously treating the policy
function implied by the envelope condition as correct may impede convergence.
Further analysis of this issue reveals that, under typical regularity conditions, there
are two reasons to suspect that this may not be a major issue. First, the fixed point
of this new method — which I refer to as the sparse endogenous grid method
(SEGM) — is unique (and, as stated above, the same as the fixed point of the tra-
ditional VFI approach), eliminating the concern that the method may find fixed
points that do not correspond to the desired solution. Second, the mapping (in
function space) implied by the method can be shown to be a local contraction map-
ping (in the sense that there is a neighborhood, centered at the fixed point, in which
the mapping satisfies the definition of a contraction). Thus while convergence is
not guaranteed for any initial guess, there are strong reasons to suspect that it will
converge.

Applying the method to a simple example supports this intuition and, in fact,
yields an even stronger practical result. Comparing otherwise equivalent imple-
mentations of a standard endogenous grid approach and the sparse endogenous
grid method (i.e. abstracting temporarily from sparse grids and comparing the
two on equivalent dense grids with linear interpolation), the SEGM does not re-



quire more iterations than the standard method to achieve convergence and, in
fact, seems to require slightly fewer. Thus the advantages of the SEGM appear to
come “for free” and there is essentially no downside to leveraging this approach.

One major advantage of the sparse endogenous grid method relative to other
methods that avoid numerical optimization (e.g. the Euler equation approach of
Judd et al. 2014) is that it remains within the value function iteration paradigm and
can leverage the various improvements and adaptions to VFI that have been devel-
oped. Of these, the most generally useful is the policy function iteration approach
developed in Rendahl (2022). After laying out the basic method, I show that these
insights can be applied to the SEGM (as long as the chosen sparse interpolation
method satisfies some simple properties) to further accelerate computation by re-
ducing the number of iterations required to achieve convergence.

As a simple example, I implement the method using efficient Smolyak interpo-
lation (developed in Judd et al. 2014) for an Aiyagari (1994) model with a high-
dimensional income process. With as few as 5 state variables, the SEGM is already
faster than a baseline dense grid EGM approach by a factor of 50 (and the advan-
tage becomes overwhelmingly large as the number of state variables increases).

Of course, this improvement comes from the fact that the advantage of employ-
ing a sparse grid (the reduction in the number of gridpoints) outweighs the disad-
vantage (increased cost of performing interpolation). In other words, it largely acts
as a measure of the gains from the “sparse” component of the SEGM (and the effi-
ciency of the chosen sparse implementation) without speaking directly to the gains
from the “endogenous grid” component (which, ultimately, is the contribution of
this paper). It is hard to benchmark the gains from this second component directly,
as variety in the implementation of sparse approaches is vast. However, a useful
heuristic is that performing interpolation compromises the (often vast) majority
of the computational cost in sparse methods. The SEGM requires only a single
interpolation per gridpoint thus the advantage over another sparse approach is
proportional to the number of interpolations required — for example, relative to
a method whose numerical optimization requires 10 interpolations per gridpoint,
the SEGM is roughly 10 times faster.

Intended Usage and Related Literature: This paper falls into the large litera-
ture aimed at globally solving high-dimension economic models. Most closely re-
lated are those that focus on leveraging sparse grids to reduce the number of grid-
points required (Judd et al. 2014, Brumm & Scheidegger 2017). Relative to these



approaches, the contribution of the SEGM is to dramatically reduce computation
time by removing the need for numerical optimization while remaining within a
value (or policy) function iteration framework. This allows the method to be ap-
plied to a wide variety of problems (due to a large literature aimed at adapting the
traditional EGM to different types of problems) while retaining stable convergence
properties.

A second strand of this literature aims at solving economic models by approxi-
mating equilibrium conditions directly via neural networks (Fernandez-Villaverde,
Nuno, Sorg-Langhans & Vogler 2020, Kahou, Ferndndez-Villaverde, Perla & Sood
2021, Maliar, Maliar & Winant 2021). Because sparse grids do not entirely avoid
the curse of dimensionality (and only mitigate it) while neural networks do, these
approaches remain tractable in much high dimension than sparse grid based ap-
proaches (i.e. dimensions larger 50). As above, one advantage of the SEGM rela-
tive to these approaches is the stability and consistency of convergence that arises
from remaining withing a VFI framework. A second advantage that arises from
this is that the implementing the SEGM is fairly straightforward conditional on
basic knowledge of value function iteration and does not require learning a new
paradigm, as is the case for machine-learning-based approaches.

The natural use-case for the SEGM stems from these comparative advantages.
It is best suited for practitioners interested in solving complex, medium-dimension
economic models and, in particular, estimating these models via procedures that
require convergence under a wide variety of parameterizations (i.e. simulated
method of moments). For models of this type, the SEGM pushes the frontier in
terms of speed while remaining a robust solution method (necessary if the solution
of the model is to be imbedded with a simulated method of moments estimation
framework).



2. A Sparse Endogenous Grid Method

A canonical Bellman equation with an occasionally binding constraint can be

written

V=T(V)
(TV)(a,y) = maxu(c) + BE[V(a',)ly] 1)

st. 0= f(c,a,d,y)
0 S g(c7 CL7 al’ y)
y' ~ M(y)

where ¢ (consumption) is the control variable, a (assets) is the non-stochastic en-
dogenous state, and y (income) is the stochastic exogenous state following Markov
process M.! The (unknown a priori) value function V' is a fixed point of the Bellman
operator 7', and the textbook solution approach is to show that 7" is a contraction
and thus the contraction mapping theorem ensures that iteratively applying 7' to
any initial guess for the value function will eventually converge to the correct so-
lution.

Implementing this approach requires a representation of V' that can be stored
and manipulated in a computer which almost invariably takes the form of a collec-
tion of gridpoints in the statespace x, a collection of real numbers corresponding to
values of V' at each gridpoint V, and an interpolation scheme to approximate the
value of V' at points in the statespace not contained in x. The natural approach to
implementing the Bellman operator is, for any given set of gridpoints x and guess
for the value function V, to solve the optimization problem in (1) for each z; € x,
update the corresponding V; € V to arrive at an updated guess V, and repeat this
process until convergence. Unfortunately, solving the optimization problem in this
manner is quite computationally intensive and involves expensive numerical op-
timization or root-finding techniques.

The endogenous grid method (EGM) of Carroll (2006) exploits the fact that
many interpolation schemes (e.g. linear, polynomial, and spline) are fairly agnos-
tic towards precisely which points in the statespace are included in x, providing
a degree of freedom that can be used to ease computation. This can be leveraged

!For brevity, I restrict to the case of a single control, exogenous state, endogenous state, and
constraint; however, everything said applies to the case of multiples as well.



by noting that if E[V,(da’,y')|y] is known for a particular value of (¢, y), the first
order condition E[V, (d',y/)|y] = %u(c) can often be used to find the optimal value
of ¢ without numerical optimization (for areas of the state-space in which g > 0)
and, through the budget constraint, the value of a such that the values of (d/, c) are
the optimal choices in state (a,y).> The EGM can then be implemented by starting
with a collection of gridpoints x and a guess V, choosing a new set of gridpoints
z, solving for (a,y,d’,c) for each (a/,y) € z analytically as described, and finally
updating both the grid x (using the pairs (a,y)) and the guess V (using the pairs
(¢,a’)) to obtain the updated value function.

A common refinement of this technique is to note that only the derivative of
V' matters when determining the value of c using the first order condition, and
the level of V itself does not enter anywhere. Thus accuracy can be improved by
guessing and updating a guess of V, directly, rather than approximating V, using
a guess V. After the tuples (a,y, d’, c) are determined, the updating step can then
occur via the envelope condition V,(a,y) = — %u’ (¢), rather than by applying the T’
operator. This version of the baseline endogenous grid method (laid out explicitly
below) serves as the jumping-off point for the sparse endogenous grid method.

Method (Endogenous Grid Method). Begin with an endogenous grid x, an initial guess
V., at each gridpoint in x, an interpolation method i(z;x, V) and an exogenous grid z.
Then...

1. Interpolate and compute expectations to obtain E[V,(d’,y)|y] for each (d',y) € z

2. Use either the first-order condition PE[V,(d',y')|ly] = u/(c) and the budget con-
straint f(c,a,a’,y) = 0 (for cases where g > 0) or the occasionally binding con-
straint g(c,a,d’,y) = 0 and the budget constraint f(c,a,a’,y) = 0 (for cases where
g = 0) to find (c,a) for each (d,y) € z.°

3. Use the envelope condition V, = —%u’(c) to obtain an updated guess for the deriva-

tive of the value function VP at each (c,a,a’y).
4. Update both the grid x, using (a,y), and the guess V ,, using V.

Repeat steps 1-4 until some convergence criterion is met (typically between the values of
E[V.(d',y')|y] computed in step 1 in consecutive iterations, as these are defined on the same

2For areas where g = 0, a and ¢ can be determined by solving f(c,a,a’,y) = 0,9(c,a,a’,y) = 0.
Here, I skip over the minor detail of determining which case a particular pair (a’, y) falls into
as it is immaterial to the main point.



grid in all iterations). Then the function i(z;x,V,) approximates (the derivative of) the
solution to the Bellman equation (1).

Endogenously choosing the grid x (as the name of the method implies) elimi-
nates the need for expensive numerical optimization but relinquishes control over
the precise set of gridpoints x. This leads to the tension highlighted in the introduc-
tion, namely that sparse grids (or other improvements that rely on precise control
of x) cannot also be implemented.*

Once the problem is viewed this way, a potential solution jumps out. Although
the endogenous grid method gives up degrees of freedom in the choice of x to ease
computation, it also introduces new degrees of freedom, namely, the choice of z.
For any desired grid x and guess for V, given by i(z;x,V,), if we knew the choice
of z such that the grid returned in step 4 were X, the issue would be resolved; we
could use our freedom of choice in z to ensure that we were always operating on
grid x.

If our guess i(z;x, V,,) is correct (i.e. it approximates the solution to 1), then the
choice of z that leads to the desired grid x could be constructed using the policy
function a’*(a, y) that solves the Bellman operator. In particular, constructing z as
{(a"(a,y),y)|(a,y) € x} ensures that x will be returned — the endogenous grid
method works by treating a value in z as the value of the state tomorrow o’ and
returns a gridpoint that correspond to the state today a in which «’ is the optimal
choice. Thus the mapping between chosen and return gridpoints is the inverse of
the policy function.

Of course, the policy function is not known,; if it were, there would be no need
to solve for V. The key insight of this paper is that the envelope condition can be
used to construct a guess for a’*(a, y).” In particular, the envelope condition implies

that £ V(any)
C* (CL, y) — ulfl( _Jc afaa y ) (2)

*A second, more minor issue is that basic “dense grid” interpolation methods are only truly
agnostic towards gridpoints in the case of a single endogenous state variable. When there are two
or more endogenous states (e.g. two-asset models), even basic multi-dimensional interpolation
methods are less agnostic often requiring hybrid methods (e.g. Ludwig & Schon 2018), although
there are clever workarounds in some models (e.g. Auclert et al. 2021). Thus a method that allows
control over x offers some advantage even in cases where sparse grids are not used.

5 Another tempting option would be to use the policy function from the last iteration as a guess
for the policy function of this iteration. This is an approach often employed in Euler equation
iteration. In practice, this approach appears to be inferior to using the envelope condition — the
convergence of the resulting algorithm is somewhat finicky and often slow.
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which can typically by solved analytically to find the optimal choice of ¢* and
combined with the budget constraint to find a*(a, y).

However, the guess of the policy function implied by (2), call it A, is not correct
in general. As a result, constructing z as {(h(a,y),¥)|(a,y) € X} does not actually
ensure that the desired grid x is returned. The second necessary insight is to notice
that treating the guess as correct and assigning the returned values of V, to x
anyways (i.e. regardless of whether or not % is actually returned) does not change
the fact that the solution to (1) is a fixed point of the iterative procedure (as h will
be equal to h if the guess is correct).

This, finally, suggests the sparse endogenous grid method.

Method (Sparse Endogenous Grid Method). Begin with an exogenous grid X, an ini-
tial guess V , at each gridpoint in X, and an interpolation method i(z;%, V). Then...

1. Evaluate V, for each (a,y) € % and construct a guess for the policy function h using
the envelope condition (2) and the budget constraint.

2. Construct z as {(h(a,y),y)|(a,y) € X} (i.e. for each (a,y) € %, the corresponding
2 is (h(a,y),y)). Note the correspondence between x and .

3. Interpolate and compute expectations to obtain E[V,(da',y')|y| for each (¢, y) € z.

4. Use either the first-order condition PE[V,(d',y')|ly] = u/(c) and the budget con-
straint f(c,a,a’,y) = 0 (for cases where g > 0) or the occasionally binding con-
straint g(c,a,d’,y) = 0 and the budget constraint f(c,a,a’,y) = 0 (for cases where
g = 0) to find c for each (d',y) € z.

5. Use the envelope condition V, = —%u’(c) to obtain an updated guess for the deriva-

tive of the value function V' at each (c,d’, y).

6. Do not update the grid (i.e. it remains precisely x). Update the guess V ,, assigning
each value of V, computed in step 5 to gridpoints in x using the correspondence
noted in step 2.

Repeat steps 1-6 until some convergence criterion between iterations of V, is met. Then the
function i(z;x, V,) approximates (the derivative of) the solution to the Bellman equation

(1).

Steps 2 and 6 represent the key innovations of the sparse endogenous grid
method. Step 2 uses the envelope condition to construct z based on the desired
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X, and step 6 forgoes assign the updated values V; to X via the correspondence
noted in step 2, rather than the value of a« computed via the budget constraint.

At this point, the purpose of these modifications to the baseline EGM should be
clear. The fact that the guess V, is always defined on the grid x, which is chosen
exogeneously at the beginning of the method, allows for dramatically greater flex-
ibility in the choice of interpolation method i, as 7 is no longer required to be “grid-
agnostic”. The most obvious use-case for this flexibility, as the name of the method
suggests, is to allow the use of sparse grid interpolation methods. But there are
potential advantages even in situations not well-suited to the use of sparse grids
(e.g. the speed of interpolation can often be improved when the grid is known,
even for methods that could be grid-agnostic).

2.1. Convergence

Because incorrectness in the guess V,, generates incorrectness in the policy func-
tion implied by the envelope condition, an initial concern is that this incorrectness
may be “self-sustaining” and generate fixed points that do not characterize the so-
lution to the Bellman equation (1), impeding convergence. This concern can be
addressed by defining the S operator induced by the sparse endogenous grid
method as

(SV)(a.y) = —%u%c) 3)

s.t. d = h(a,y, Vy(a,y))if 0 < h(a,y, Va(a,y))
u'(¢) = BE[Va(d',y)[y) if 0 < h(a,y, Va(a, y))
0 = a otherwise

0= f(c,a,d,y) otherwise
for h defined as

h(a,y,V,) = x where z solves 0 = f(u’_l( — %),a, x, y> 4)

Mimicking the traditional 7" operator, SV, corresponds to the function that would

be returned after a single iteration of the method with initial guess V,, assuming
that the interpolation method 7 interpolates functions perfectly.

Once the S operator is written down formally, it is clear that any solution to

(1) must have a derivative that is a fixed point of (3) as this follows directly from
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the envelope condition. More interestingly, in the case of concave solution V' and
utility function u (so that the first-order conditions are sufficient to characterize the
solution) the converse is also true — any fixed point of (3) must be the derivative
of a solution to (1).° Consequently, the uniqueness of the fixed point of S follows
directly from the uniqueness of the solution to the canonical Bellman equation (1),
eliminating the concern that there may be fixed points that do not correspond to
the desired solution.

A second concern is that even if this incorrectness does not generate additional
fixed points, it may generate cycles or other instabilities, and iteratively applying
S to some initial guess may not converge to the fixed point. This concern turns out
to be much more difficult to address than the first; unlike 7', S is not a contraction
in general so the Contraction Mapping Theorem does not apply.

It can be shown, however, that S is a contraction “locally” (under some mild as-
sumptions that are satisfied by most models). The contraction is local in the sense
that sup,,, [(SWa1)(a,y) = (SWas)(a,y)| < =4 B sup, [Wa1(a,y) — Was(a, )| is only
guaranteed if W, ; and W, » are sufficiently close to the fixed point V. Although
not a guarantee of convergence, this does strongly suggest that the method will
converge for good initial guesses.” Indeed, this appears be to the case in prac-
tice; my experience is that the method has converged smoothly and without issue,
even for very precise (=~ 107'*) tolerances in the maximum log-difference between
iterations.

2.2. Implementation Details

The sparse endogenous grid method laid out above provides a way to update
a guess of the (derivative of the) value function at a set of exogenously-specific
gridpoints x while avoiding numerical optimization, allowing the use of sparse
grids. With numerical optimization eliminated, there remain two costly compu-
tational steps. The first is that each iteration of the SEGM requires evaluation of
the interpolation function i per gridpoint. For basic interpolation methods (i.e. lin-
ear), the cost of evaluating an interpolant is small; however, sparse interpolation
methods are often substantially slower. Second, expectations must be computed

®The easiest way to see this is to note that plugging the envelope condition and budget con-
straint into the first order equation arising from (1) yields the functional equation V,(a,y) =
—% BE[V,(h(a,y, Va(a,y)))] which must also be satisfied by any fixed point of (3).

’The formalization and proof of this statement are fairly unenlightening and are relegated to
Appendix B.
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once for each gridpoint per iteration (which, naively, would require many more
interpolation calls).

The cost of these steps is largely determined by the properties of the interpo-
lating function ¢ and, consequently, the choice of 7 is a substantial determinant of
the overall speed of the method. I opt to use the efficient Smolyak polynomials
of Judd, Maliar, Maliar & Valero (2014) as they are (relatively) quick to evaluate
and allow some optimizations that dramatically improve performance. Most im-
portantly, the structure of efficient Smolyak polynomials is such that for any set of
interpolants b, the vector of interpolated values i(b; X, V,) takes the form

i(b;x,Va) = A(b,X)V, (5)

where A is an M-by-N matrix, M is the number of interpolants in b, and N is the
number of gridpoints in x.

This property essentially says that the interpolated value at any (fixed) inter-
polant can be expressed as a linear combination of the function values V, that
depends only on the grids b and x and not on the function values themselves. ® As
a result of this, many costly computations can be pre-computed and have their cost
reduced to the cost of a simple matrix multiplication (at least within the iterative
loop). This property can also be used to accelerate iteration, but I defer discussion
of this until Section 3.

Interpolant Evaluation: As their name suggests, it is fairly quick to perform
interpolation (i.e. compute A(b,x)) via efficient Smolyak polynomials — indeed,
that is their purpose. To further reduce computation time, however we can lever-
age the fact that the SEGM only requires interpolation along endogenous state
variables. Thatis, z = {(h(a,y),y)|(a,y) € X} implies that z and x align exactly in
their values of y (the exogenous state) and only differ in their values for a (the en-
dogenous state). Because x is specified exogenously, this means that the values of
the exogenous state variables in z at which 7 is evaluated do not change from iter-
ation to iteration. In essence, if the point (¢, y1, y2, - - ., yx) is an interpolant needed
for one iteration (for some ¢), then the point (7, y1, v, . . . , yx) will be an interpolant
needed for the next iteration (for some potentially different ).

It turns out that efficient Smolyak polynomials are constructed in such a way

8Here, it is worth noting that this is not a property unique to Smolyak interpolation. For exam-
ple, the adaptive sparse grids of Brumm & Scheidegger (2017) also exhibit this property.
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that changing a single input in this way does not require recomputing the entire
matrix A from scratch. In other words, knowledge of the row vector A((¢1,...,¢n. Y1, - Yn), X)
can be used to determine A((ry,...,7n, Y1, --.,Yn), X) at lower computational cost.
The full description of why this is true and precisely how it is implemented is
beyond the scope of this paper, but combining this with the fact above that only
the endogenous-state-components of the interpolants change from iteration to it-
eration substantially increases the speed of the algorithm. Because the reduction in
computational time is larger when number of fixed variables is large, this approach
offers the largest acceleration in models where the number of endogenous states
is smaller relative to the number of exogenous (to the household) states, which
describes the vast majority of models.’

Expectations: We can further leverage the linear structure of (5) to accelerate
the computation of expectations. The standard approach to approximating expec-
tations at a point z in the state-space is to use some quadrature rule, consisting
of nodes q(z) and weights w so that EV,(z) ~ w'V,(q(z)). Of course since the
value of V, is only know at certain gridpoints, V,(q(z)) must be interpolated as
A(q(z),x)V, combining these two equations and stacking EV,(z;) into a k-by-1
vector corresponding to the expectations at & desired points yields

w'A(q(1), %)
EVa(z) ~ : V,=E(z,x)V, (6)
w'A(q(z),X)

Because the grid on which V, is known, X%, is exogenously fixed and chosen
ahead of time, the matrix E(x, %) can be computed ahead of time (i.e. before iter-
ation and/or estimation begin), reducing the cost of computing expectations to a
simple N-by-N matrix multiplication where N is the number of gridpoints in x.

EV, ~ E(%,X)V, (7)

The choice of quadrature rule is relatively unimportant, although well-chosen

9This approach was directly inspired by the Efficiently Updated Neural Networks of the Stock-
fish chess engine (The Stockfish developers (see AUTHORS file) n.d.). Although the structure of
Smolyak polynomials is different enough from neural networks that the gains in efficiency are of a
substantially smaller scale, the core intuition of leveraging previous computations to accelerate the
computation at a value that is only slightly different than a previous value remains the same.
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quadrature rules can improve accuracy of the approximation and reduce the com-
putation burden of the initial calculation of E(x,%). In the example below, all the
innovations to the exogenous state variables follow normal distributions. Thus it
is natural to use a Gauss-Hermite quadrature designed to integrate with respect
to these shocks. In particular, I use the sparse Gauss-Hermite quadrature rules
implemented in the Julia package SparseGrids. jl1.

3. Howard-Rendahl Acceleration

Other methods of iteration, such as Euler equation iteration or envelope condi-
tion iteration, can also be modified to use sparse grids (although none do so quite
as naturally as the sparse endogenous grid method in the presence of borrowing
constraints). The main advantage of the SEGM is that, unlike these methods, it
continues to iterate backwards through the Bellman equation and remains con-
ceptually very close to textbook value function iteration. As a result, it can be
combined with a variety of already-developed techniques aimed at modifying VFI
to solve atypical problems such as non-concave value functions (Fella 2014) or dis-
crete choices (Iskhakov, Jorgensen, Rust & Schjerning 2017).

Of these, the largest (and most general) benefit comes from Howard accelera-
tion, specifically the variant developed in Rendahl (2022) which I refer to as Howard-
Rendahl (HR) acceleration. Convergence of (the derivative of) the value function
can often take many iterations, particularly for models with high discount factors,
leading to long computation times even when each individual iteration is rela-
tively quick to perform. This slowness is a result of the fact that the updated value
function u(c*) + SE[VP™(a"*, y')|y] puts substantial weight (roughly proportion ()
on the previous guess of the value function V™ and only a small portion on the
new policy function u(c*). In the SEGM, this is issue is made worse by the fact that
a'* is eliminated from the updating equation and instead replaced by h(a;y, V,)
which increases dependence on the previous guess.

Conceptually, HR-acceleration mitigates this and increases the weight placed
on the policy function by applying the new policy function c* repeated so that the
updated value function is given by Eo 3" ftu(c*) + T TE[VP®(a™*, /)|y] where
larger values of 1" correspond to more weight placed on c¢*. Taking the limit as
T — oo and making a recursive substitution yields

Vi¥(a,y) = u(c*(a, y)) + PRV (a"(a,y), y) 1] (8)
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In essence, the value function is now updated by assuming that an agent acts ac-
cording to policies c*, a* forever, rather than a single period (as in traditional VFI),
and updating the value function accordingly.

The first step in implementing this approach in the SEGM is to replace equation
(8) with an equation in terms of V**". This can be done by differentiating (8) with
respect to a'” (This is a key insight taken from Rendahl 2022) which yields

VY (0, ) = () + BE[V (0 (a,y), o) |)al” ©)
W (e +ﬁ(f“+ffc VE[V (0 (a, ), 4 )|y] (10)

where the second line follows from the first via the budget constraint.

This yields an updating equation for V" directly but is, in general, a non-linear
functional equation and thus difficult to solve. The key is that if the interpolation
method chosen satisfies the property described in (5) (i.e. the value of any inter-
polant can be expressed as a linear combination of the function values at the grid-
points), we can use this updating equation to write a system of linear equations
that update the values V, for the gridpoints x. Making these substitutions, as well
as substituting h (the vector of values for & at each point in %) for a’* yields

VR — o/ (c)de + ﬁ(w)A(ﬁ, DB, %) Ve (11)
= (I- 5(%)1&(}1,&)1@(&, X)) Vie™ = u/(c)dc (12)

where dc is a matrix with diagonal entries corresponding to the derivative of ¢*(a)
at each point in x and zero elsewhere. The matrices f,, f., and £,/ are the same but
for partial derivatives of the budget constraint.

Equation (12) is the HR updating equation. Given a (vector of values of a) pol-
icy function c, this equation can be used to obtain an updated guess of V,. This
amounts to solving an N-by-N system of linear equations where N is the num-
ber of gridpoints in x. In general, this is a fairly expensive operation (relative to
simple operations such as matrix-vector multiplication), but the reduction in the

19Here I skip over the technical detail that the policy functions are not necessarily everywhere
differentiable. While true in a technical sense, Rendahl (2022) provides good discussion into why
this is not a practical issue. The essence is that the envelope condition can be used to show that
any errors arising from treating these functions as differentiable everywhere disappear once con-
vergence is achieved.
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number of iterations dominates the resulting increase in time-per-iteration, often
by an overwhelming amount. Additionally, there are ways to approximate the so-
lution to (12) that avoid directly solving the system, which can often be used to
accelerate computation substantially (discussed below).

3.1. More Implementation Details

As discussed above, solving the linear system in (12) for V¥ directly is some-
what slow as typical approaches involve finding the LU-factorization of the LHS
matrix. To accelerate this, we can leverage both the fact that we have a previous
guess for the value function V, and the approximate sparsity of A (h, X)E(x, X).

Previous Guess: When the number of gridpoints is large, it is often much faster
to approximate the solution to linear systems such as (12) rather than solving them
directly. One such approximation exploits the power series (I — B)™' =1+ B +
B? + ... and computes an approximate solution using the first 7' terms of the RHS
of this equation. Although this approach is suboptimal in general and dominated
by algorithms such as the Generalized Minimal Residual Method (GMRES), it is
convenient here as it allows us to leverage the fact that we possess a previous
guess for the value function that we expect to be reasonably close to the desired
solution VIv.

Taking the power series formula, making a recursive substitution after the first
T terms, and using the approximation V¥ ~ Vo4 on the RHS yields

V¥ 4/ (c)de + Bu/(c)de + . .. + BT/ (c)dc + BTH1vo (13)

where B is a placeholder for §(fetfdc) A(h,%)E(x, x). Computing this approxima-
tion recursively requires only matriax-by-vector multiplication and entirely sidesteps
the need for costly factorization or even matrix-by-matrix multiplication.

An alternative view of this approximation formula is that the LHS is the up-
dated guess of the value function that would be achieved if the HR-updating rule
were derived using a finite updating horizon 7' < oo by applying equation (11) to
Vold repeated T times. While this gives us confidence that this approximation will
not prevent convergence, it does suggest that choosing a value for 7" this is too low
may serve to undo the benefits of HR acceleration as weight is shifted away from
the policy function and back towards the previous guess of the value function. In
practice, however, even values of 7" as small as 15 appear to achieve a close to iden-
tical (+/— one iteration) improvement in performance. Thus this “finite-horizon”
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approach that avoids inverting a linear system is often superior."

Approximate Sparsity: In the case of efficient Smolyak polynomials, the ma-
trices A(h,%) and E(x, %) are not sparse in general. In fact, the opposite is true
and these matrices are entirely dense (i.e. possess no zero values) by construction.
When the dimension of the problem is high, however, they do contain many en-
tries that are very close to zero and thus are “approximately sparse”. This can be
exploited to accelerate either the inversion in (12) or the multiplication in (13) at
the cost of some accuracy.

The simplest approach is is to “sparsify” these matrices by replacing all of their
elements with absolute value less than some threshold by zero. Then the inversion
(if applying 12) or multiplication (if applying 13) can proceed with this new sparse
matrices. This approach merits some caution, however, as sparse grid algorithms
only represent speed gains relative to dense grid algorithms if the matrices used
achieve a sufficient level of sparsity which is often not true in the case of Smolyak

polynomials, even for medium dimension problems.12

3.2. Comparisons to Other Methods

How does this variant of the SEGM compare to other similar methods for solv-
ing Bellman equations? Continuous-time methods (Ahn et al. 2018) and the discrete-
time Howard method developed in Rendahl (2022) both obtain updated guesses
for the value function (or its derivative) by solving a similar system of linear equa-
tions, making them the natural comparisons. Relative to these methods, the SEGM
is qualitatively different in two ways.

First, both other methods approximate the value function via dense grid linear
interpolation. A substantial advantage of this approach is that it leads to sparse
linear systems (i.e. those with many zeros). This structure can be exploited to sub-
stantially reduce the computational expense of solving the linear system in order
to update the value function guess (although this advantage begins to shrink in
more complicated models that start to reduce the sparsity of the system such as

1T refer to this as “finite-horizon HR-acceleration” due to this intuition, but it is worth noting
that this is equivalent to the “modified policy function iteration” of Phelan & Eslami (2022).

12This represents the major weakness of Smolyak approaches vs linear basis function approaches,
as the latter generate substantially sparser matrices and, consequently, the updating step can be
performed much faster. Still, in the intended applications of this paper (problems with state-spaces
spanning 5-10 dimensions), the benefits of the Smolyak approach in the other steps (i.e. the speed
at which A(h, %) itself can be computed ) outweigh this cost. The development of a sparse inter-
polation algorithm in which A is both quick-to-compute and highly sparse would be a massive
benefit to the method overall.
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multiple discrete states). In contrast, the SEGM requires solving systems that are
(in general) non-sparse.

The advantage of the SEGM, of course, is that the value function must be up-
dated at much fewer gridpoints and, as a result, the system of equations to be
solved is much smaller than the other methods, even if it is non-sparse. Thus
the extent to which the SEGM reduces computation time depends on the extent
to which this reduction in the number of gridpoints outweighs the cost of solv-
ing the non-sparse system. Fortunately, the reduction is gridpoints is quite large
even for modest numbers of states ensuring that the SEGM represents substan-
tial reductions in computation time (even ignoring concerns about memory). Judd
et al. (2014) and Brumm & Scheidegger (2017) provide a more in-depth explana-
tion, but as a simple example, a sparse Smolyak grid approximation for a function
of 3 variables at depth 6 (65 nodes along the densest axes) requires on the order of
102 times fewer gridpoints that the equivalent (65 node) dense grid, and this falls
dramatically at the number of state variables increases (10~ for 5, 10~ for 7).

4. A Simple Example

To demonstrate the method and provide some basic benchmarks that give a
sense for the overall runtime of the method as well as the relative runtime of the
various steps, I use a simple model in the style of Aiyagari (1994). The only change
is that I enrich the income process, which in the baseline model follows a basic
AR(1) structure, to introduce additional state variables.

The simplest way to do this is to add additional processes so that income de-
pends on the sum of multiple stochastic variables. That is, an individuals period
income y; is given by

Y = ALt FEN e
211 = Pz + ¢ (14)
€ ~~ N(O, 2)
where z; is the vector (z14, ... ,2n,) and P is a diagonal matrix of persistence pa-

rameters.

For the purpose of this paper, this extension does not have much economic
meaning. Increasing N to be larger than unity serves as a straightforward way
to purely increase the dimension of the state-space, and thus the benefits of lever-
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aging sparse grids, without introducing any additional complications that would
cloud comparisons (either between methods at a given dimension or between dif-
ferent dimensionalities for a given method). It is not hard to imagine, however,
the economic relevance of richer, higher-dimension income process in general. For
example, the income process could be one of the many estimated in Guvenen,
Karahan, Ozkan & Song (2021).

Other than this change, to rest of the model remains standard. Households
received CRRA utility from consumption (satisfying the Inada conditions and en-
suring that we do not need to worry non-convexity or non-monotonicity), save in
a risk free asset a that pays an exogenous rate of return r,'* and face a standard
budget constraint. The Bellman equation of the household is then given by

l—0o

V(a,z1,...,2y) = max + BE[V(d, 21, -, 25)|71, - - -5 2N] (15)

c,a’ — g

st.c+d =(1+r)a+y

Yy = €Z1+...+ZN

a >0

z' is distributed as in (14)

The parameters of the problem are taken to be typical and are fully described in
Appendix Table A.1. The exact values of the parameters are unimportant (as long
as 117 < f to ensure that the value function is finite and well-defined). The only
thing worth noting is that the various elements of z are assumed to be identical
and independent. That is, the matrices P and ¥ are diagonal, and their elements
along the diagonal do not vary. Again, this is uninteresting but merely serves to
allow the dimension of the problem to increase with V.

13Because 7 is taken to be exogenous, this is a so-called partial equilibrium problem and does not
focus on computing an equilibrium interest rate. Structuring the problem this way means that the
only computational task is the solution of the household’s problem which is natural as this is the
focus of the SEGM. Although the SEGM approach, in particular the HR equations in Section 3 that
leverage sparse interpolation, does suggest some applications towards the computation of steady-
state distributions (and thus applications towards general equilibrium calculations), it is unclear
at the time of writing whether these approaches should be included in an additional section of
this paper or are complex enough to warrant their own paper. Thus I opt to sidestep the issue
(for now) and focus only on solving the household problem. This is further justified by the fact
that approximating the steady-state distribution via Monte Carlo simulation often dominates direct
solution of the distribution via policy functions and transition probabilities in high-dimensional
problems as the cost of the former does not depend on the number of state variables.

19



4.1. Solution Times

With the example model specified, we can now evaluate the performance of the
SEGM, and the various tricks/implementation optimizations laid out in this paper,
under different levels of dimensionality.

To that end, I solve the model using multiple approaches. As a baseline, I solve
the model using the endogenous grid method and dense grid linear interpolation.
I then resolve the model introducing the components of the SEGM one at a time in
order to get a sense of the benefits (and costs) of each. This correspond to solving
the model using the SEGM approach implemented with dense grids and linear
interpolation, then moving to the SEGM implemented via efficient Smolyak grids,
and, finally, the SEGM with HR acceleration. After this, I then fiddle with the
optimizations described at the end of Section 3 (finite-horizon HR acceleration and
approximate sparsity) to see how much more performance can be eked out.

Across all of these solution approaches, I keep the other aspects of the computa-
tional problem as similar as possible. The Smolyak grid is chosen to have depth 7
along the dimension of assets and depth 5 in the remaining dimensions, leveraging
the anisotropic flexibility of these grids. The closest equivalent dense grid is one
with 129 (27 + 1) gridpoints in the asset dimension and 33 (2° + 1) gridpoints in the
remaining dimensions,'* as this is the number of gridpoints that the Smolyak grid
maintains along its “densest” axes. Relative to the dense grid, the Smolyak grid is
slightly rescaled (to align with Chevyshev polynomials) and drops points deemed
unimportant by the method (of course this potentially carries a drop in accuracy,
which must be assessed later). Other optimizations, such as the pre-computation
of expectations via sparse Gauss-Hermite quadrature (so that integration can be
performed via a simple matrix-vector multiplication) and pre-allocation of mem-
ory are also made equivalent where possible.

Table 1 displays the time required to compute the solution (up to a tolerance of
1079) for all five methods (rows) and the cases of N € {2, 3,4} (columns). Column
(1) corresponds to the case where N = 2 — the income process is two-dimensional
which, when combined with the asset, means there are three state variables in total
and the dimension of the problem is only slightly larger than a textbook model.
The baseline EGM is able to solve this problem in 4.7 seconds. Shifting to the SEGM
with the dense grid increases this to 10.7 seconds (the reasons for this increase will

4These levels of approximation are somewhat low but are necessary to make the dense grid
approach tractable in higher dimensions for the purpose of comparison.
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Table 1: Time-to-Solve using Various Approaches

(1) (2) 3)
N=2 N=3 N=4
Method:
Baseline EGM 47s 29m 316m
SEGM w/ dense grid 10.7s 7.6m 1146 m
Baseline SEGM 104s 1.7m 10m
SEGM w/ HR acceleration 7.6 s T T
SEGM w/ finite-horizon HR 3.7s 08m 65m
Precomputation:

Sparse grids 4.0s 11m 14m
Dense grids 796 s T T

Ratio of sparse-to-dense gridpoints ~1072 ~10~* ~10~*

Note: This table displays the total computation time for the various methods discussed throughout
the paper denoted in either seconds (column 1) or minutes (column 2 and column 3). Computations
are conducted on an AMD Ryzen 5 5600x processor using Julia via a single-threaded implementa-
tion. All approaches iterate until a unit-free (i.e. log-difference) error of less than 10~¢ is achieved
between iterations. {: These computations fail to achieve convergence. See text for further discus-
sion. t1: Pre-computing expectations for dense grids in a manner equivalent to that employed for
the sparse grids quickly becomes prohibitively expensive as N increases. Thus for the dense-grid

implementations in these columns, expectations are ignored.

be further discussed below).

The main result of column (1) is seen by comparing the dense-grid SEGM to
the baseline SEGM. Here, despite the sparse grid possessing a dramatically lower
number of gridpoints (on the order of 102, switching to the sparse grid barely re-
duces computation time (from 10.7 to 10.4 seconds). This is a result of the fact that
performing sparse interpolation is a dramatically more expensive operation than
performing linear interpolation (which is a simple, highly-optimizable operation
in this setting). In three dimensions, the reduction in gridpoints is not large enough
to overcome this effect — the two channels are roughly of the same magnitude and
thus lead to no net change in computation time. Implementing HR-acceleration
can further improve the computation time of the SEGM, but the same could be
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said of the dense-grid approaches, so this point is moot. Overall (and consistent
with intuition), the gains from sparse grids in low-dimension problems are small
or even negative.

This conclusion, however, changes rapidly as the dimension of the problem in-
creases. In column (2), corresponding to 4 state variables, the baseline implemen-
tation of the SEGM is now substantially faster than the baseline EGM (1.7 minutes
vs 2.9 minutes) and can be further improved to 0.8 minutes via HR-acceleration (al-
though only in the finite-horizon implementation which will be discussed later).
Although the relative increase in computation time required for sparse interpola-
tion does not change much from the N = 2 case," the relative number of gridpoints
required falls to 1073, shifting things in favor of the SEGM.

The advantage becomes overwhelming even at N = 4 which most would con-
sider a “medium-dimension” problem. Here the baseline dense-grid EGM requires
roughly 5 hours (316 minutes) to achieve a solution while the SEGM can acheive
this in 10 minutes or 6.5 minutes if HR-acceleration is applied. The overall speed-
up is roughly 50x (316/6.5) indicating that the SEGM performs dramatically better
in these problems than the naive method. Of course, it may be more reasonable
in higher dimensions to instead compare the SEGM to a sparse grid method that
utilitizes numerical optimization (i.e. compare on the “EGM” component of the
method rather than the “S” component). Even at N = 4, performing sparse-grid in-
terpolation makes up the majority of the computational cost. Thus the gain relative
to a method utilizing numerical optimization can be well-approximated by com-
paring the number of interpolations required per gridpoint. The SEGM requires
only one interpolation so relative to a method that requires 10 (e.g. a Newton’s-
method-based approach), we expect the SEGM to be roughly 10 times faster.

Discussion of HR acceleration: The second major lesson, beyond the speed of
the SEGM, from Table 1 is that the finite-horizon implementation of HR-acceleration
dominates the infinite-horizon approach the relies on matrix inversion both in
speed and stability. The fact that the finite-horizon approach is faster echoes the
results of Santos & Rust (2004) as well as Phelan & Eslami (2022) and arises from
the fact that the matrix-vector multiplication requires computations on the order

of n? (for an n-byn matrix) while matrix inversion (more precisely: matrix factor-

1>Roughly speaking. The interpolation time does increase somewhat substantially with the num-
ber of dimensions. But in relative terms this is dwarfed by the magnitude of the change in the
relative number of gridpoints.
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ization) requires n®. These values can change with sparsity, but unless the sparsity
satisfies particular conditions, the ordering itself does not change.

More surprising is the fact that the infinite-horizon HR approach does not con-
verge at all for N € {3,4} despite the fact that the baseline SEGM converges with-
out issue. While it is difficult to determine the precise reason for this, the core
reason for this appears to be the fact that the infinite-horizon approach “over-fits”
to errors in the policy function. These errors can arise from interpolation error in
E[V,(h,v')|y] or interpolation error in the consumption function (which is used to
approximate the derivative of ¢*(a) via finite-differences). By applying maximal
weight to the policy function (which is impacted by these errors) and no weight
to the previous guess of the value function (which is not), the infinite-horizon ap-
proach fails to purge these errors over the course of multiple iterations.

This interpretation of the convergence failure is supported by two numerical
experiments. First, the convergence of the infinite-horizon approach seems to de-
pend heavily on the depth of the Smolyak grid used. If the grid is made too shal-
low, convergence will fail even at low dimensions (N = 2), supporting the interpre-
tation that interpolation error is to blame. Second, the finite-horizon approach will
eventually fail to converge as well if the horizon is set too high, lending support to
the fact that the high weight placed on the policy function by the infinite-horizon
approach is to blame. Still, this discussion is largely academic as the finite-horizon
approach, which does not appear to suffer from these issues at useful horizons
lengths, dominates the infinite-horizon approach anyways.

Number of Iterations for Various Approaches: Table 2 decomposes the run-
time of each approach into the number of iterations required to achieve conver-
gence and the time required to complete a single iteration so that (# of iterations) *
(Time per iteration) ~ Total run-time. There are two main lessons to take from this
table.

The first is that the key step of the EGM, using the envelope condition to con-
struct a guess for the true policy function that is then treated as correct, does not
appear to impede convergence at all. Comparing the number of iterations re-
quired for convergence between the baseline EGM and the SEGM implemented
with dense grids, the number of iterations required for convergence are more or
less identical between the two (and even somewhat lower for the SEGM). This is
somewhat surprising, as one may expect the additional error introduced by this
approximation to lead to additional iterations. In practice, however, this appears
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not to be a concern and the this aspect of the SEGM can be implemented essen-
tially “for free”, which may be useful even in situations where sparse grids are not
optimal (i.e. situations with two endogenous variables where a traditional EGM
approach would lead to a highly irregular grid and require a complex interpolation
approach).

The baseline SEGM, however, does require substantially more iterations than
either of the other (non-HR-approaches), though not too many more. The fact
that these extra iterations are not required when using the SEGM with a dense
grid suggests that this is a function of sparse grid interpolation. Intuitively, as
the dimension of the problem increases and the number of points dropped by the
sparse grid (relative to the dense grid) increases, the accuracy of the interpolation
of the continuation value decreases. Overcoming this error requires additional
iterations.

The second takeaway is that the cost, in terms of the number of additional it-
erations required, of switching infinite-horizon HR acceleration to finite-horizon
is small. I opt to use a horizon of 13 (that is, I choose 7" in equation (13) to be 13)
so that the updated value function corresponds to the value of following the cur-
rent guess of the policy function for 13 periods plus the continuation value from
the previous iteration. This value is chosen to (roughly) minimizes the run-time of
the approach. Even with this short horizon, the finite-horizon approach requires
only 5 more iterations than the infinite-horizon approach (about a 25 percent in-
crease) when N = 2. Making comparisons in higher dimensions is impossible as
the infinite-horizon approach fails to converge.

4.2. Accuracy

[To be written]

5. Conclusion

This paper presents a method aimed at harmonizing endogenous grid approaches
to solving economic models (which avoid numerical optimization) with sparse
grid approaches (which mitigate the curse of dimensionality). The key tension
between these two approaches is that the former leverages flexibility in the pre-
cise gridpoints at which the value function is computing while the latter relies on
knowing the value function at a carefully chosen set of gridpoints. This tension is
resolved by using envelop conditions to construct a guess of the policy function. If
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this guess were correct, one could use this guess to precise control the set of grid-
points returned by an endogenous grid approach. The key insight is that while
this guess is not correct in general, it will be correct after convergence is achieved
and treating it as correct (allowing one to leverage this precise control) does not
change the fixed point of the iterative procedure.

The resulting method, the Sparse Endogenous Grid Methods (SEGM), is best
suited to quickly solving medium-dimension economic models. Comparing the
run-time of the approach to a standard endogenous grid approach suggests that
there is little advantage gained when dimensionality is low (3 dimensions or less)
as the reduction in the number of gridpoints is outweighed by the increased com-
putational cost of sparse grid interpolation (relative to linear interpolation). In
higher dimensions, the advantage of the SEGM (relative to dense grid approaches)
becomes overwhelming. This advantage can be furthered increased by leveraging
the fact that the SEGM naturally lends itself to acceleration via policy-function iter-
ation. Applying this, the SEGM is about 50 times faster than a dense endogenous
grid approach for a 5 dimensional problem. In higher dimensions, the gains are
even larger.

Beyond allowing the implementation of sparse grids, the method has a natural
application to models with multiple endogenous choice variables (i.e. multi-asset
models such as HANK models). Even in low dimensions, the presence of multiple
choice variables leads to complications for traditional endogenous grid methods
due to grid-misalignment, requiring hybrid methods (e.g. Ludwig & Schon 2018)
or re-gridding approaches (e.g. Druedahl & Jergensen 2017). The SEGM avoid
these issues completely by providing the value of the value function at precise
gridpoints, even if a dense-grid interpolation method is chosen.

The largest computational bottlenecks of the SEGM are the cost of performing
interpolation and the cost of the matrix-vector multiplications performed during
the finite-horizon policy function updating step. Relative to the implementation
presented in this paper, there is room for substantial improvement on these fronts.
In particular, an interpolation approach based on linear basis functions, rather than
Smolyak polynomials, has the potential to dramatically decrease the computa-
tional cost of the updating step (as the vector of interpolated values is a highly
sparse linear combination of the gridded function values). Developing (or, more
precisely, translating to Julia) and efficient approach to performing sparse linear
basis interpolation is somewhat beyond the scope of this paper is left to future
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work.
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Table 2: Time-to-Solve Decomposed into Iterations and Time-per-Iteration

Baseline EGM

SEGM w/ dense grid

Baseline SEGM

SEGM w/ HR acceleration

SEGM w/ finite-horizon HR

Total time:
Iterations:

Time-per-it:

Total time:
Iterations:

Time-per-it:

Total time:
Iterations:

Time-per-it:

Total time:
Iterations:

Time-per-it:

Total time:
Iterations:

Time-per-it:

(1) ) 3)
N = N=3 N=4
4.7 s 29m 316m
267 296 324
18 ms 0.6s 59 s
10.7s 76m 1146 m
261 289 317
41 ms 1.6s 217 s
104s 1.7m 10 m
292 396 408
36 ms 03s 1.5s
7.6s
16
475 ms
3.7s 0.8m 65m
21 27 48
176 ms 1.8s 81s

Note: This table decomposes the timing results of Table 1 into iterations and time-per-iteration in

terms of milliseconds (column 1) or seconds (column 2 and column 3). Included in “Total time” is

the additional step of memory pre-allocation before iterations begin; however, the contribution of

this step is tiny and is thus ignored.
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Appendix

A. Additional Tables and Figure

Table A.1: Parameters of the Simple Model

Parameter Value Description

6] 0.97 Discount Factor

r 0.01 Rate of Return

o 2 CRRA Parameter

P 0.5I  Persistence of z’s

by 0.1I  Variance of innovations in z’s

Note: This table displays the parameters of the simple model used to perform the exercises in
Section 4.

B. Proof of Convergence

It is helpful to formally define the S’ operator that will be shown to be a con-
traction. To simplify notation and exposition, here I specialize to the case where
the occasionally binding constraint takes the form a’ > 0, but the extension to more
general constraints (and the assumptions about those constraints required for con-
vergence to hold) is straightforward.

Definition 1. Let X be the space of all continuous, bounded, convex functions (a,y) — R
weakly decreasing in a and | - | be the sup-norm so that (X, | - |) is a metric space. Then
S": X — X is the operator defined by

(S'Va)(a,y) = —%u'(a) (16)

st. 0= f(c,a,d,y)
a' = h(a,y, Va(a,y)) if 0 < h(a,y, Va(a,y))

u'(c) = BE[Vu(a',y/)|y] if 0 < h(a,y, Va(a,y))
0 = a’ otherwise

We say that S" is a local contraction if there exists some € > 0 such that for all W,V
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satisfying

Wi(a,y) =V*(a,y) + efw(a,y)
Via,y) =V*(a,y) + efv(a,y)

for some Lipschitz-continuous fw, fy with Lipschitz constant K (assumed to be equal
WLOG), we have that |S'W — S'V| < §|W — V| for some § € (0, 1).

The simplest approach to showing the local contractivity of S’ is to apply Black-
well’s sufficient conditions to W, V' that satisfying the definition of locality.

Monotonicity: Suppose that W,(a,y) > V,(a,y) for all (a,y). We wish to show
that (S'W,)(a,y) > (S'V,)(a,y) for all (a,y) and proceed by cases.

Main Case: Both W, (a,y) and V,(a,y) yield 0 < ¢’ when applying S’. We wish
to show that —42 SE[W,(h(a, y, Wa(a,y)), ¥ )|y] > —4BE[Va(h(a,y, Va(a,)),y)|y]-

To save on notation define constants and suppress dependence on y so that

_a

fCﬁE[Va@(a,y, Va(a,9)),9)ly] = RBEV (a, h(a,V (a))) (17)

where R is a shorthand for —% In a typical ABH model, this would be the total
return on assets (1 + r) divided by the price of consumption (1).
Consider the functionf()\) defined by

ARBEW (a, h(a, \W,(a)+ (1 =NV (a))) 4+ (1= XN RBEV (a, h(a, \W (a) + (1= \)V (a)))

(18)
Our approach will be to show that f’(z) > 0Vz € (0, 1), and then the fundamental
theorem of calculus will guaranteed that f(1) — f(0) > 0 which is what we desire
to show. Differentiating wrt A and grouping terms yields (note here that WLOG I
divide the entire expression by Rf3 to simplify as we only care about the sign of the
expression)

(EW () —EV()) + (W(a) — V(a)) NEW'(-)ha(a, AW (a) + (1 — NV (a)))+ (19)
+((1 = NEV'()ha(a, \WW(a) + (1 — NV (a)))

Note that the first-order and envelope conditions of the problem imply that
V*(a) = RPEV*(-). This would be useful to leverage to further group terms, but
it is not true in general for W, V. Instead, we leverage the fact that the assumption
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that W, V' are close to V* lets us write
Wi(a) = RBEW () + g(¢, K) (20)

for some g satisfying lim. .o g(e, K) = 0, VK (and the same for V)).The statement is
offered here without proof and is straightforward (though tedious) to verify under
the regularity conditions laid out in the problem statement. Making this substi-
tution, grouping terms, and absorbing some unimportant terms in g (as well as
combining ¢’s) yields

(EW () — EV(-)) (1 + RBEU () (a, U(a)))) + (e, K) 1)

where U = AW + (1 — \)V.

Our next step is to consider the definition of the policy function ¢* (note that I
have written the value function in terms of an integral, to keep consistent with the
notation used so far)

/Oa V*(x)dx = u(c*(a)) + FE /Oa V*(ﬁ(a, V*(a))) (22)

where the fact that V* is the solution to the bellman equation ensures that i(a, V*(a))
corresponds to the savings policy function. Differentiating this equation with re-
spect to a and making some substitutions via envelope and first-order conditions

yields
d(a 1 1
SRR )

where the inequality follows from the fact that monotonicity of the savings func-

BEV*(h(a, V*(a)))ha(a, V*(a)) = (1~

tion ensures that ¢'(a) < R everywhere.
As before, we can leverage the fact that IV, V are close to V* to show that equa-
tion (21) can be rewritten as

(EW(-) —EV()) (1 + RBEV*(-)ha(a, V*(a)))) + d(e, K) (24)

where the difference between V* and U has been folded into g.

The term (EW (-) — EV(-)) is positive by assumption. Leveraging equation (23)
shows that the term (1 + RBEV*(-)hs(a, V*(a)))) is also strictly positive as 8 < 1.
Thus there is some ¢ > 0 for which (24) is strictily positive, completing the proof of
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(local) monotonicity.

Remaining Cases: The remaining cases are (fortunately) much more straight-
forward.

* Case 2: Both W,(a,y) and V,(a,y) yield 0 = o’ when applying S’. Then we
have

(SW.)(a,y) = —%u’<c*> — (5'V,)(a.)

where ¢* is the solution to 0 = f(c, a,0,y) given (a,y).

* Case 3: W,(a,y) yields 0 < o’ and V,(a,y) yields 0 = ' when applying 5’
Then we have

o
fe

_ _%u’(u’—l(ﬁE[Wa(a/, y)ly))

> —%u’(c*)

= (5'Va)(a,y)

(S'Wa)(a,y) = = BEW.(d,y)|y]

where the inequality arises from the fact that % > 0= c* > u (BE[VL(d, y)|y])
as c* satisfies f(c,a,0,y) while u'~'(SE[W,(d',y)|y]) satisfies f(c,a,d’,y) for

some a’ > 0.

The potential fourth case where W, (a, y) yields 0 = ¢’ and V,(a, y) yields 0 < o
is not possible due to the fact that / is decreasing in its third argument. Thus all
the cases are exhausted and we have shown monotonicity.

Discounting: We wish to show that there is some v € (0, 1) such that (5'(V, +
k))(a,y) < (S'Va)(a,y) + vk for all (V,, &, (a,y)). In our case, v will be ( — %B)
(which, recall, falls between 0 and 1 by assumption). As with monotonicity, we
proceed by cases.

* Case 1: Both (V,, + k)(a,y) and V,(a,y) yield 0 < o’ when applying S’. Then

33



we have

(Vi -+ 1)) (a.9) = 2 BEIVa a1 Vala, ). ) + Kl
_ —%m@[mﬁ(a,y, Vaary)), o)) + (— %/M
— (SV)(ay) + (- L2p)k

fe

e Case 2: Both (V,, + k)(a,y) and V,(a,y) yield 0 = o’ when applying S’. Then
we have

(5'Va-+ 1) (a.9) = ~2200() = (SVa)law) < (SVa)(an) + (- 2B)

e Case 3: (V, + k)(a,y) yields 0 < &’ and V,(a, y) yields 0 = o’ when applying
S’. Then we have

fa 7

(S"(Va+ k) (a,y) = —TBEM(h(m y, Vala,y) + k), y') + kly]
_ —%m@wﬁ(a,y, Va(a,y) + K).9)ly] + ( %mk
_ —%u'<u'-1<m@[v;<iz<a,y, Va(a, ), )lol)) + ( — %w
fo s o
< gl (= 0k
— (SVa)(ay) + (— %w
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